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Asymptotic model of electroporation
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Electroporation is described mathematically by a partial differential equation~PDE! that governs the distri-
bution of pores as a function of their radius and time. This PDE does not have an analytical solution and,
because of the presence of disparate spatial and temporal scales, numerical solutions are hard to obtain. These
difficulties limit the application of the PDE only to experimental setups with a uniformly polarized membrane.
This study performs a rigorous, asymptotic reduction of the PDE to an ordinary differential equation~ODE!
that describes the dynamics of the pore densityN(t). GivenN(t), the precise distribution of the pores in the
space of their radii can be determined by an asymptotic approximation. Thus, the asymptotic ODE represents
most of the phenomenology contained in the PDE. It is easy to solve numerically, which makes it a powerful
tool to study electroporation in experimental setups with significant spatial dependence, such vesicles or cells
in an external field.@S1063-651X~99!10603-2#

PACS number~s!: 87.16.Dg, 87.10.1e
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I. INTRODUCTION

When a membrane is exposed to a high transmemb
potential, it exhibits a rapid increase in its conductivity
5–6 orders of magnitude@1#. Such an electrical breakdow
of the barrier function of the membrane is generally attr
uted to the creation of pores, which are the aqueous p
ways in the lipid bilayer of the membrane. This proce
called electroporation, can be irreversible, leading to a m
chanical rupture of the membrane, or reversible, in wh
case pores reseal and the same membrane can expe
multiple episodes of the high conductivity state. The tra
sient state of high conductivity has important practical ap
cations, allowing the fusion of cells and the introduction
the biologically active substances~drugs or genetic material!
into cells@2–4#. On the other hand, electroporation occurs
an undesirable side affect following the delivery of defibr
lation shocks to the heart@5–7# and may be responsible fo
the late necrosis after the accidental exposure to high vol
@8#.

The theoretical understanding of the electroporation p
cess is based on the Smoluchowski equation, a partial di
ential equation~PDE! that governs the distribution of pore
as a function of their radius and time. Letn(r ,t) denote the
pore density distribution function such that at a given timet,
the number of pores~per unit area! with radii betweenr and
r 1dr is n(r ,t)dr. According to the literature,n(r ,t) satis-
fies the equation

nt1D] r S 2
w r

kT
n2nr D5S~r !, ~1!

whereD is the diffusion constant of pores,w(r ) is the pore
energy,k is the Boltzmann constant,T is the absolute tem
perature, andS(r ) is the source term that represents the c
ation and the destruction of pores. Subscriptt denotes differ-
entiation with respect to time; differentiation with respect
pore radius is denoted by] r or by a subscriptr. This equa-
tion was first used to describe electroporation in 1979
PRE 591063-651X/99/59~3!/3471~12!/$15.00
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Chizmadzhev and colleagues@9#. Further development of the
theory of electroporation was undertaken by Weaver and
leagues @10–13#. A joint review by Weaver and Chiz-
madzhev gives a thorough summary of current understan
of electroporation and the relation between the theory
experiments@14#.

Investigating the electroporation process using PDE~1!
has several drawbacks. First, this equation requires
knowledge of several constants whose values cannot be m
sured directly. Most of these constants were estimated
theoretical arguments and are known only by order of m
nitude@12#. Because of the uncertainties in the values of
parameters, the solution to Eq.~1! gives only a qualitative
picture of the electroporation process. Second, the con
tion between the variables of the PDE and the quantities
are available from the experiments is far from obvious. E
perimental studies use simplified, partial descriptions of
electroporation process to interpret the collected d
@15,16#. Finally, the PDE~1!, with its variable coefficients,
does not have an analytical solution and must be solved
merically. However, the exponential dependence of the c
ation and destruction rates on the pore energy and the e
tence of disparate spatial and temporal scales makes
numerical solution hard to obtain. Hence, numerical so
tions of the PDE~1! have been obtained only for a spatial
clamped, uniformly polarized membrane patch@12,13,17#.
Application of Eq.~1! to an experimental situation with sig
nificant spatial dependence, such a vesicle or a cell in
external field@18–20#, would be impractical.

This paper presents a rigorous, asymptotic reduction
PDE ~1! to an ordinary differential equation~ODE!. This
ODE describes the dynamics of the pore densityN(t), which
is related to the pore distribution functionn(r ,t) by

N~ t ![E
0

`

n~r ,t !dr. ~2!

GivenN(t), the distribution of the pores in the space of the
radii can be determined by an asymptotic approximati
3471 ©1999 The American Physical Society
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However, the essential features of the electroporation pro
are well reflected by the pore densityN(t) and the
asymptotic ODE represents most of the phenomenology c
tained in the PDE.

The organization of this paper is as follows. Section
gives a physical background of the electroporation proc
and introduces the initial-boundary value problem govern
the pore densityn(r ,t). Section III converts the initial-
boundary value problem to dimensionless form. Small
rameters in the dimensionless equations lead to a red
problem which is presented in Sec. IV. Section V uses or
of magnitude estimates to develop a heuristic overview
the asymptotic dynamics of the pore densityN(t). The ac-
tual derivation is carried out in Sec. VI. Section VII uses t
asymptotic ODE to demonstrate an explicit dependence
pore creation rate on the transmembrane potential. Fin
Sec. VIII discusses the limitations and practical implicatio
of this study.

II. PHYSICAL BACKGROUND

This paper assumes the existence of two types of p
@16,21,22#. The hydrophobic pores@Fig. 1~a!# are simply
gaps in the lipid bilayer of the membrane, formed as a re
of its thermal fluctuations. The hydrophilic or inverted por
@Fig. 1~b!# have their walls lined with the water-attractin
heads of lipid molecules. Hence, the hydrophilic pores all
the passage of water-soluble substances, such as ions,
the hydrophobic pores do not. In the remainder of this pa
the hydrophilic pores will be referred to as conducting a
the hydrophobic pores, as nonconducting.

The crucial assumption in studying the behavior of po
is the relationship between the pore radius and its ene
This paper assumes the pore energetics proposed by Ab
et al. @16,21# depicted in Fig. 2. This energy function con
sists of two curves,u(r ) for the nonconducting pores an
w(r ) for the conducting pores. The energyE(r ) of a pore of
radiusr is the lesser ofu(r ) andw(r ) as shown in the inse
of Fig. 2. E(r ) has two maxima, atr * and r d and a local
minimum at r m . The pore energies atr * , r m , and r d are
denoted by

E* 5E~r * !, Em5E~r m!, and Ed5E~r d!. ~3!

Typical values of radii and energies are given in Table I.
The energyu(r ) of the nonconducting pores is given

the literature in terms of Bessel’s functions@16#. However,
for the values of parameters in Table I, the Bessel’s functi
expression is well approximated by the quadratic functio

u~r !'E* S r

r *
D 2

. ~4!

FIG. 1. The structure of~a! hydrophobic and~b! hydrophilic
pores~based on Refs.@16,21,22#!.
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The energyw(r ) of conducting pores is given by the for
mula

w~r !52pgr 2psr 21S C

r D 4

, ~5!

whereg is the energy per unit length of the pore perime
ands is the energy per unit area of the intact membrane. T
first two terms in Eq.~5! are identical to the energy of th
conducting pores given in the literature@10,16,21#. The third
term, added by us, represents the steric repulsion@14,23#
between lipid heads lining the pore and is responsible for
increase in pore energy with shrinking radiusr→r

*
1 . Con-

stantC and the power are chosen so thatr * , E* , andr m are
close to values measured by Glaseret al. @16#.

The pore energyE(r ) of Fig. 2 corresponds to the situa
tion when there is no externally applied transmembrane
tential. In the presence of a transmembrane potentialV, the
pore energy, denoted byw(r ,t), is given by

w~r ,t !5E~r !2papV2r 2, ~6!

where the time dependence inw arises through the tempora
variations ofV. The component2papV2r 2 is the capacitive
contribution@10,21#. The coefficientap is a property of the
membrane and its aqueous environment. The simplest
mate, based on a continuum model@11,16#, givesap in terms
of membrane thicknessh and dielectric constantskw andkm
of water and membrane:

ap5
1

2h
~kw2km!e0 , ~7!

wheree0 is the permittivity of vacuum. A nominal value o
ap is given in Table I.

For a sufficiently smallV, w(r ,t) has the same qualitativ
structure asE(r ): a cusplike maximum atr * , a local mini-
mum atr m , and a maximum atr d . However,r m andr d are
now functions ofV. The energies at these radii are denot
by

w* [w~r * ,t !, wm[w~r m ,t !, wd[w~r d ,t !. ~8!

FIG. 2. The energy function of a pore at the transmembr
potentialVm50 ~based on Refs.@16,21#!. This plot uses the values
of parameters in Table I and the form ofw(r ) in Eq. ~5!.
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TABLE I. Values of parameters.

Parameter Symbol Value Source

Diffusion coefficient D 5310214 m2 s21 @13#

Edge energy of a pore g 1.8310211 Jm21 @13,16#
Energy of an intact membrane s 1023 Jm22 @13#

Constant in Eq.~5! C 9.67310215 J1/4 m est. from Eq.~5!

Radii:
at local maximum r * 0.5 nm @16#

at local minimum r m 0.8 nm @16#

at global maximum r d 18 nm est. from Eq.~5!

Energies:
at local maximum E* 45 kT @16#

at local minimum Em 25.6 kT est. from Eq.~5!

at global maximum Ed 238 kT est. from Eq.~5!

Dielectric constant of water kw 80 @13,16#
Dielectric constant of lipid km 2 @13,16#
Permittivity of vacuum e0 8.85310212 Fm21

Thickness of the membrane h 5 nm @16#

Constant in Eq.~6! ap 6.931022 Fm22 est. from Eq.~7!

Fluctuation rate per unit volume nc 231038 m23 s @10#

Fluctuation rate per lipid molecule nd 1011 s21 @16#
uc
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Figure 3 shows graphs ofw(r ,t) parametrized byV. As V
increases to a critical value ofVc'0.5 V, the local minimum
r m and local maximumr d coalesce and disappear.

The last term in the Smoluchowski equation~1! is the
source termS(r ) that represents the creation and the destr
tion of pores. The formulation forS(r ) assumes that the
formation of pores is a two-step process@16,21,22#. All
pores are initially created as nonconducting@Fig. 1~a!#. Ac-
cording to Ref.@10#, nonconducting pores with energy b
tweenU andU1dU are created at a rate

nche2U/kTdS U

kTD ~9!

per unit area of the membrane. Here,nc is the ‘‘attempt rate
density’’ @10# with units s21 m23 and

U~r ,t ![u~r !2papV2r 2 ~10!

denotes the energy of nonconducting pores at nonzero tr
membrane potential. The differentialdU of energy in Eq.~9!
is related to a corresponding differentialdr of the pore radius
by dU5Urdr. Hence, the pores with radii betweenr and r
1dr are created at a rate

nch
Ur

kT
e2U/kTdr ~11!

per unit area of the membrane.
If a nonconducting pore is created with the radiusr

.r * , it spontaneously changes its configuration and for
an inverted, conducting pore@Fig. 1~b!#. This conducting
pore survives as long as its radius remains abover * . Hence,
with r .r * , Eq. ~11! is effectively a creation rate density o
conducting pores. If a nonconducting pore is created with
radiusr ,r * , the pore remains nonconducting and it ha
lifetime ‘‘on the order of the lipid fluctuations’’@16#. That
-

ns-

s

e
a

implies that in timedt, the fraction of nonconducting pore
with radii less thanr * which are destroyed isnddt, wherend
is the frequency of lipid fluctuations. Hence, the noncondu
ing pores with radii betweenr and r 1dr, r ,r * , are de-
stroyed at a rate

ndndr ~12!

per unit area of the membrane.
Based on the creation rate~11! and destruction rate~12!,

the source densityS(r ) can be written as

S~r !5nch
Ur

kT
eU/kT2ndnH~r * 2r !, ~13!

FIG. 3. The change in the energy function of a pore at
transmembrane potentialVmÞ0.
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where H(r ), the Heavyside’s step function, represents
fact that only nonconducting pores (0,r ,r * ) are being de-
stroyed. With Eq.~13!, PDE ~1! is complete.

The standard initial and boundary value problem ass
ated with PDE~1! requires that an initial conditionn(r ,0) be
given in r .0, and that a boundary condition onn at r 50 be
specified for allt. This paper assumes thatr 50 is an absorb-
ing boundary, i.e.,

n~0,t !50. ~14!

Intuitively, condition ~14! means that when pores shrink
zero, they disappear.

III. DIMENSIONLESS FORM OF THE BOUNDARY
VALUE PROBLEM

The initial-boundary value problem~1!,~14! of pore dy-
namics is amenable to asymptotic solution. A prelimina
nondimensionalization leads to the recognition of relev
gauge parameters. The variables are scaled according t
system of units in the scaling table:

Variable r t w,U n
Unit r * r

*
2 /D E* 1/r

*
3 ~15!

The units of pore radius and energy clearly come from
structure of pore energyw as a function ofr ~Fig. 2!. The
unit of time is the duration required for pore radius to diffu
a distance on the order ofr * . It is assumed that the chara
teristic time associated with the temporal variation ofw is
equal or larger than this unit of time. The unit of pore dist
bution functionn amounts to comparing the density of por
to the density of lipid heads: Letn̄( r̄ ) be the nondimensiona
pore distribution as a function of nondimensional radiusr̄
[r /r * . Given the unit 1/r

*
3 of n in Eq. ~15!, n and n̄ are

related by

n~r !5
1

r
*
3 n̄S r

r *
D . ~16!

Hence, the pore numberN per unit area~2! can be expresse
as

N5E
0

` 1

r
*
2 n̄S r

r *
DdS r

r *
D5

1

r
*
2 E

0

`

n̄~ r̄ !dr̄. ~17!

If the dimensionless integral*0
`n̄( r̄ )dr̄ is of the order of

unity, thenN has the order of magnitude 1/r
*
2 . Assuming

that r
*
2 is comparable to the area of a lipid head gro

@12,14#, 1/r
*
2 corresponds to ‘‘one pore per lipid molecule.

So indeed, measuringn in units of 1/r
*
3 leads to a dimen-

sionless distribution function which is the density of por
per density of lipid molecules. Physically reasonable so
tions are expected to haven much smaller then unity.

The dimensionless version of the Smoluchowski equa
~1! is

nt1] r S 2
1

«
w rn2nr D5

1

m S Ur

«
e2U/«2gnH~12r ! D .

~18!
e

i-

y
t
the

e

-

n

Here,«, m, andg are dimensionless parameters

1

«
[

E*
kT

'45,

1

m
[

r
*
2

D
nd'53105,

g[
nd

nchr
*
2 '0.4. ~19!

The nominal values of« andm are small whileg is of order
unity. This suggests an asymptotic analysis in which«, m are
treated as gauge parameters tending to zero andg is treated
as a constant independent of«,m.

The quantity

f [2
1

«
w rn2nr ~20!

in the left hand side of Eq.~18! is the dimensionless flux
The right hand side of Eq.~18! contains the dimensionles
source, with the creation rate

1

m«
Ure

2U/« ~21!

and the destruction rate

g

m
nH~12r !. ~22!

This destruction rate indicates that a lifetime of a nonco
ducting pore is on the order ofm.

IV. REDUCTION OF THE BOUNDARY VALUE PROBLEM
TO r>1

A. Pore creation and destruction nearr 51

Simple order of magnitude estimates based on the dim
sionless PDE~18! provide physical insight into the creatio
of conducting pores. There are two routes for the creation
conducting pores.

~i! The ‘‘indirect’’ route, in which a nonconducting por
is created with radiusr ,1 and then diffuses intor .1 be-
fore it is destroyed. Once inr .1, it turns into a conducting
pore.

~ii ! The ‘‘direct’’ route, in which a nonconducting pore i
created with radiusr .1 and immediately converts into
conducting pore.

Since the dimensionless creation rate~21! decays expo-
nentially with length constant« asr increases, it is clear tha
the creation of nonconducting pores inr ,1 is much more
prolific than the creation of conducting pores withr .1. Can
it be that even though there is a voracious destruction of
nonconducting pores at dimensionless rate~22! in r ,1,
enough of them cross over intor .1 to make the indirect
route dominant? The answer depends on the relative ma
tudes of« andm.

Consider nonconducting pores created with radiusr 51
2x, where 0,x,1. Can they be transported intor .1 dur-
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ing their dimensionless lifetimem? The drift velocity inr
,1 is seen from Eq.~18! to be negative,2w r /«52Ur /«
,0, so the only transport process that increasesr is diffu-
sion. The dimensionless time required to diffuse distancx
~in order to cross intor .1! is O(x2), and the fraction of
pores which make it have order of magnitudee2x2/m. Hence,
the raten8 at which conducting pores are created by t
indirect route is estimated in order of magnitude by the in
gral

E
0

1 Ur~12x!

«m
e2U~12x!/«e2x2/mdx. ~23!

Here, the Gaussian factore2x2/m represents the fraction o
pores making it tor .1 and the reminder of the integrand
the creation rate atr 512x. Since for the nominal values o
« andm in Eq. ~19!, Am!«, the Gaussian factor dominate
in Eq. ~23! and the integral is estimated by Laplace’s meth
to give the order of magnitude ofn8,

n85OS 1

«Am
e2w

*
/«D . ~24!

Direct creation of conducting pores withr .1 proceeds at
rate

n5E
1

` Ur

«m
e2U/«dr5

1

m
e2w

*
/«. ~25!

Note that the main contribution ton comes from a ‘‘11

boundary layer,’’ 0,r 215O(«). Comparison of Eqs.~24!
and ~25! reveals that

n8

n
5OSAm

« D 50.064. ~26!

Sincen8!n it is thedirect route that dominates the creatio
of conducting pores.

B. Absorbing boundary condition at r 51

In the PDE~18!, the pore distribution functionn(r ,t) is
defined in 0,r ,`. In practical problems, only conductin
pores with radiusr .1 are of interest. Pore density in 0,r
,1 matters only through its effect on pore density inr .1.
The proceeding analysis determines whether ther ,1 pores
really matter by comparing the magnitude of the pore dis
bution functionn in the 11 and 12 boundary layers.

In the 11 boundary layer, 0,r 215O(«), the convec-
tive component2nw r /« and the diffusive component2nr
of the flux f ~20! balance each other and the creation ratn
~25! in the order of magnitude. This leads to the order
magnitude estimaten1 of n in the 11 boundary layer

n15OS «

m
e2w

*
/«D in 0,r 215O~«!. ~27!

Now consider pore distribution in the 12 boundary layer, 0
,12r 5O(Am). The O(Am) thickness of this boundary
-

d

i-

f

layer is equal to the distance a nonconducting pore diffu
in its lifetime m. Pores are introduced into the 12 boundary
layer by three processes.

~i! Conducting pores cross over fromr .1 into r ,1 at a
rate whose order of magnitude isO@(1/m)e2w

*
/«#, the same

as the magnitude ofn ~25!.
~ii ! Spontaneous creation at a rate

E
12Am

1 Ur

«m
e2U/«dr5OS 1

«Am
e2w

*
/«D . ~28!

The estimate of the integral in the left hand side is based
Am!« as in Eq.~19!.

~iii ! Pores also enter the 12 boundary layer across the le
endpointr 512Am. This rate is estimated the same wayn8
was. In fact, its order of magnitudeO@(1/«Am)e2w

*
/«# is

the same as that ofn8 ~24!.
In the limit Am!«, process~i!, representing the crossove

from r .1, dominates. Hence, pores are introduced into
left boundary layer at raten ~25!. This rate must be balance
by the rate of pore destruction in this interval, which h
order of magnitude

OXS n2

m DAmC5OS n2

Am
D . ~29!

Here,n2 represents the order of magnitude ofn in the 12

boundary layer, to be determined by balance of Eqs.~25! and
~29!. This balance gives

n25OS 1

Am
e2w

*
/«D ~30!

and, consequently,

n2

n1 5OSAm

« D 50.064. ~31!

The magnituden2 in the 12 boundary layer is much les
than magnituden1 in the 11 boundary layer. Hence, in th
limit «, Am/«→0, the pore distribution functionn in r .1 is
subject to the effective, absorbing boundary condition a
the full boundary value problem can be replaced by a
duced boundary value problem inr .1. It consists of the
Smoluchowski equation

nt1] r H 2w r

«
n2nr J 5

Ur

«m
e2U/« in r .1, ~32!

together with absorbing boundary condition

n~1,t !50. ~33!

V. HEURISTIC OVERVIEW OF THE ASYMPTOTIC
DYNAMICS OF PORE DENSITY

A heuristic overview of phenomena contained in t
boundary value problem~32!,~33! can be given in advance o
detailed derivation. Consider the situation in which the lo
energy minimum atr 5r m exists. A significant fraction of the
pores created in the 11 boundary layer congregate near th
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energy minimum. Pores cannot accumulate aroundr m indefi-
nitely. Eventually, saturation must set in. One mode of sa
ration consists of pores crossing the diffusion barrier atr d
and expanding without bounds. For artificial bilayers such
in Chernomordik’s experiments@1#, this is catastrophic: Me-
chanical rupture of the membrane is imminent. In actual b
logical cell membranes, unbound pore growth is gener
arrested by mechanical structures in the membrane suc
the cytoskeletal network@24,25#. In any case, the fate o
pores after crossingr d is beyond the scope of the analys
presented here. There is only one relevant question a
breakdown: How long does it take? This topic has been
tensively studied@1,9,26#. The expected time to breakdow
scales with the energy barrierwd2wm ase2(wd2wm)/«.

A second mode of saturation consists of pores nearr m
climbing back the energy barrier atr 51 and crossing ove
into r ,1 where they are destroyed. This process is ca
resealing. The time for resealing scales with energy bar
w* 2wm ase2(w

*
2wm)/«.

If wd.w* , resealing is seen long before breakdown.
this case, a first guess at the ODE forN(t) follows from
simple order of magnitude estimates. Suppose that the a
mulation of pores aboutr m is initially negligible. The net
flux of pores from the 11 boundary layer tor m is approxi-
mated by the creation raten ~25!. For times much shorte
than the breakdown time, pores continue to accumu
aroundr m with none crossing intor .r d . The pore distribu-
tion n(r ,t) in 1,r ,r d is approximated in order of magn
tude by the Boltzmann distribution

n~r ,t !;nme2~w~r ,t !2wm!/«, ~34!

where nm[n(r m ,t). There is a sharp peak aboutr 5r m
which accounts for most of the total pore densityN(t). In
fact, nm in Eq. ~34! is related toN according to

N5nmE
1

r d
e2~w2wm!/«dr. ~35!

The integral may be evaluated by the Laplace’s method

E
1

r d
e2~w2wm!/«dr;A2p«

wm9
5O~A«!, ~36!

wherewm9 [w rr (r m ,t). Combining Eqs.~35! and ~36! gives

nm5OS N

A«
D . ~37!

The Boltzmann distribution~34! implies that the sharp
peak atr m is surrounded by exponentially small ‘‘tails’’ in
the rest of 1,r ,r d . The tail amplitude atr 51 has order of
magnitude

nme2~w
*

2wm!/« or
N

A«
e2~w

*
2wm!/« ~38!

on account of Eq.~37!. If there were no pore creation in th
11 boundary layer, crossover intor ,1 would proceed at a
rate whose order of magnitude is
-

s

-
ly
as

ut
x-

d
er

u-

te

N

«3/2e2~w
*

2wm!/«. ~39!

This is simply the tail amplitude~38! divided by thicknesse
of the 11 boundary layer. In the presence of pore creat
~25!, the net flux of pores from the 11 boundary layer to the
accumulation atr m should be the difference between Eq
~25! and ~39!. This gives the conjectured ODE forN(t),

Ṅ'
1

m
e2w

*
/«2

N

«3/2e2~w
*

2wm!/«. ~40!

It turns out that Eq.~40! is in fact correct up to factors o
O(1), so it properly captures the dependence on gauge
rameters«, m. From Eq. ~40!, it is evident that net pore

production is turned off,Ṅ50, whenN achieves the equi-
librium valueNeq with order of magnitude

Neq5OS «3/2

m
e2wm /«D . ~41!

VI. SINGULAR PERTURBATION ANALYSIS

A. Regularizing transformation

This section presents the rigorous derivation of the O
~40! governing the pore densityN(t). The analysis assume
that the local energy minimum atr m exists, thatw* ,wd ,
and that the dimensionless time constant ofw’s temporal
variations is of order unity. The first step is a prelimina
regularization of the boundary value problem~32!,~33!. In
intervals ofr where the total fluxf is much smaller than its
components2nr and 2nw r /«, one can determine the ap
proximate form ofn by settingf 50 in Eq.~20! and integrat-
ing the resulting ODE. The result is

n;e2@w~r ,t !2C~ t !#/«, ~42!

whereC(t) is a function of time, as yet undetermined. Th
1/« in the exponent indicates that solutions forn(r ,t) gener-
ally have length and time constants of sizeO(«). The expo-
nential is factored out by a transformation fromn to a new
variableg, defined by

n~r ,t !5g~r ,t !e2@w~r ,t !2C~ t !#/«. ~43!

The idea is that solutions forg should not contain length an
time constants of sizeO(«), at least not in whole regions o
the ~r,t! plane of size unity.

The curver 5r m(t) in ~r,t! plane represents the positio
of the energy minimum as a function of time. Suppression
short length and time constants fromg in a neighborhood of
this curve leads immediately to the determination of t
function C(t) in Eq. ~43!. Assuming that length and time
constants ofg in a neighborhood ofr m(t) areO(1), thelocal
behavior ofn in an O(A«) neighborhood ofr m(t) is well
approximated by the following asymptotic form:

n;gme2~wm2C!/«e2wm9 ~r 2r m!2/«, ~44!

which was obtained by replacingg(r ,t) in Eq. ~43! by gm
[g@r m(t),t# and substitutingw(r ,t) in the exponential by



tio
a
n

-

f

y

ion:

ts

the
t
1

u-
-
h

ics
the

epa-

he

PRE 59 3477ASYMPTOTIC MODEL OF ELECTROPORATION
its Taylor series aroundr m . Equation~44! has a Gaussian

factor e2wm9 (r 2r m)2/«, which shows thatn(r ,t) is sharply
peaked aboutr m and that almost all the total pore densityN
is due to pores withur 2r mu5O(A«). Integrating Eq.~44! in
r and using Eq.~36!, one finds an asymptotic form ofN,

N;gme2~wm2C!/«A2p«

wm9
. ~45!

N generally does not contain short time constants of dura
«. In fact, the usual situation is quite the opposite. Rec
from Eq. ~40! that the resealing time constant is expone
tially large in«. Given absence of time constante in N(t), it
is clear from Eq.~45! that in order forgm not to have an«
time constant,C(t) must be

C~ t !5wm[w@r m~ t !,t#. ~46!

With Eq. ~46!, transformation~43! is completely defined

n~r ,t !5g~r ,t !e2~w2wm!/«. ~47!

In addition, Eq.~45! relatesgm to N by

gm5A wm9

2p«
N. ~48!

Substituting the representation~47! of n into Eq. ~20! gives
the flux f in terms ofg

f 52gre
2~w2wm!/«. ~49!

Substitution of Eq.~47! into Smoluchowski equation~32!
gives a PDE forg,

gt2
w t2ẇm

«
g2grr 1

w r

«
gr

5
Ur

«m
e2wm /«e2~U2w!/« in r .1, ~50!

and the absorbing boundary condition~33! translates into

g~1,t !50. ~51!

In addition, the initial distribution functionn(r ,0) induces
the corresponding initial distribution functiong(r ,0).

B. Outer solution

Asymptotic analysis of problem~50!,~51! for g begins
with the outer limit process in which length and time con
stants ofg are O(1), independent of«. The leading order
approximation to the PDE~50! comes from balance o
O(1/«) terms

w rgr;~w t2ẇm!g

or

gr

g
;

w t2ẇm

w r
. ~52!
n
ll
-

The right hand side of Eq.~52! is possibly singular atr m and
r d , wherew r50. The singularity atr m is removable. Note
that

ẇm5
d

dt
w t@r m~ t !,t#5~w t1 ṙw r !ur 5r m

5w t~r m ,t !

so

w t2ẇm

w r
5

w t~r ,t !2w t~r m ,t !

w r~r ,t !
→

w tr~r m ,t !

w rr ~r m ,t !
as r→r m .

~53!

The limit of the indeterminate form is computed b
L’Hospital’s rule. Since the right-hand side of Eq.~52! is
regular atr m , Eq. ~52! may be integrated to give

g;gml,

with

l5l~r ,t ![expS E
r m

r w t2ẇm

w r
dr D in 1,r ,r d . ~54!

There are immediate questions about this outer solut
At any time t, its values in the entire interval ofr, 1,r
,r d are set by its valuegm at r 5r m . It is clear that this
outer solution cannot match arbitrary initial values ofg(r ,0),
nor does it satisfy the absorbing boundary conditiong(1,t)
50 unlessg[0. The leading order outer solution exhibi
nonuniform validity in the following.

~i! An initial layer where 0,t5O(«). This layer re-
solves the rapid relaxation of the initial datag(r ,0) to thet
501 limit of outer solution.

~ii ! The 11 boundary layerwhere 0,r 215O(«). This
boundary layer solution resolves the noncompliance of
outer solution with the absorbing boundary condition ar
51 and determines the effective flux of pores from the1

boundary layer tor m .
~iii ! An internal layer about the diffusion barrier, where

ur 2r du5O(A«), due to the generally nonremovable sing
larity of (w t2ẇm)/w r at r d . This singular behavior is re
solved by matching with an internal layer solution whic
describes the flux across the diffusion barrier.

This paper addresses only~ii !, the 11 boundary layer so-
lution. As argued in the Discussion,~i! and ~iii ! are either
negligible or irrelevant to the scenarios of pore dynam
addressed here. Relaxation of the initial distribution to
outer solution and escape over atime-dependentdiffusion
barrier are addressed in a separate paper, currently in pr
ration.

C. Boundary layer solution in r 511 and asymptotic
ODE for pore density

In the 11 boundary layer, 0,r 215O(«), g generally
exhibits O(«) length and time constants. In this case, t
‘‘time terms’’

gt2
w t2ẇm

«
g ~55!
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are one power of« smaller than the ‘‘space terms’’

2grr 1
w r

«
gr ~56!

in Eq. ~50!. Hence, in the 11 boundary layer, time terms~55!
may be dropped from the leading order approximation to
~50!. What survives is the ODE

2grr 1
w r

«
gr;

Ur

«m
e2wm /«e2~U2w!/«. ~57!

Introducing to Eq.~57! the boundary layer coordinate

R[
r 21

«
~58!

and taking the limit«→0, R.0 fixed, one obtains

2gRR2uw
*
8 ugR;

«

m
U

*
8 e2wm /«e2~U

*
8 1uw

*
8 u!R in R.0.

~59!

Here, w
*
8 [w r(1

1,t) and similarly, U
*
8 [Ur(1

1,t). Since
w

*
8 is generally negative, it is represented by2uw

*
8 u so no

minus sign hides in Eq.~59!. Effective boundary conditions
are

g50 at R50, ~60!

g→gml~1,t ! as R→`. ~61!

Equation~60! is the absorbing boundary condition and E
~61! follows from matching with the outer solution~54!. Fig-
ure 4 gives an illustration of the matching condition~61!.
The boundary layer and outer solutions are depicted in r
tion to each other and to the exact solution forg.

The complete solution forg can be easily obtained from
the boundary value problem~59!–~61!. However,g itself is
not relevant. What is really needed is the net flux of po
out of the 11 boundary layer. This flux can be extracted fro
Eqs.~59!–~61! as follows. The first integral of Eq.~59! is

FIG. 4. Approximation of functiong(r ,t) by the outer and
boundary layer solutions.
.

.

a-

s

euw
*
8 uRgR5

«

m
e2wm /«e2U

*
8 R1F, ~62!

whereF is a constant of integration. It is related to the n
flux out of the 11 boundary layer. In the limit«→0, R.0
fixed, the flux~49! reduces to

f ;2
1

«
e2~w

*
2wm!/«~gRe2uw

*
8 uR!. ~63!

The expression in parentheses is equal to the left-hand
of Eq. ~62!. Hence, after substituting in its place the righ
hand side of Eq.~62!, it is seen that this boundary laye
approximation to the flux converges to

f `[2
1

«
e2~w

*
2wm!/«F as R→`. ~64!

ExpressingF in terms of f ` in Eq. ~62!, and dividing by

euw
*
8 uR gives

gR5
«

m
e2wm /«e2~U

*
8 1uw

*
8 u!R2«e~w

*
2wm!/«e2uw

*
8 uRf `

in R.0. ~65!

Integrating Eq.~65! in R from 0 to` and using the boundary
conditions~60!,~61! gives

gml~1,t !5
«

m

e2wm /«

U
*
8 1uw

*
8 u

2
«

uw
*
8 u

e~w
*

2wm!/« f ` . ~66!

This obscure looking relation is actually the asymptotic OD
for N(t): The net fluxf ` is of courseṄ, the rate of change
of the pore densityN(t), andgm is related toN by Eq. ~48!.
With these substitution and further rearrangement, Eq.~66!
becomes

Ṅ5KS 12
N

Neq
D , ~67!

whereK andNeq are functions of time given by

K5
a

m
e2w

*
/«, ~68!

a[
uw

*
8 u

U
*
8 1uw

*
8 u

, ~69!

Neq5
«3/2

m
be2wm /«, ~70!

b[
1

U
*
8 1uw

*
8 uA

2p

wm9
e*

1

r m~w t2ẇm!/wrdr. ~71!

In the expressions forK andNeq, the dependence on gaug
parameters«, m and exponentially small factorse2w

*
/«,

e2wm /« are written out explicitly. The remaining factorsa
andb areO(1) functions of time. Note further that the term
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of the ODE ~67! and Neq ~70! indeed have the orders o
magnitude predicted in Eqs.~40!,~41!.

If the dimensionless characteristic time of temporal var
tions of pore energyw is much longer that unity, thenuw tu,
uẇmu!1 and the exponential factor

e*
1

r m~w t2ẇm!/wrdr ~72!

in Eq. ~71! is nearly unity. In this ‘‘quasistatic limit,’’ the
asymptotic ODE~67! for N(t) is equivalent to the ODE tha
would results ifw were assumed time independent. In th
case,Neq would represent the saturation value ofN at which
the net pore creation rate is zero.

Given pore densityN(t), the pore distribution function
n(r ,t) is recovered asymptotically from Eq.~47! with g
given by Eq.~54!. The resulting formula is

n~r ,t !;NA wm9

2p«
e* r m

r
~w t2ẇm!/wrdre2~w2wm!/«. ~73!

Figure 5 depicts the asymptotic distributionn at transmem-
brane potentialVm50.

VII. PORE CREATION RATE COUPLED
TO TRANSMEMBRANE POTENTIAL

The coefficientsK andNeq in the ODE~67! depend on the
energy functionsw and U. These in turn depend on tran
membrane potentialV. The dimensionless version of Eq.~6!
is

w~r ,t !5E~r !2pr 2V2, ~74!

where V is dimensionless potential, measured in units
(AE* /ap)/r * . An analogous dimensionless relation hol
for U(r ,t). Substitutingw5w(r ,t), U5U(r ,t) into formu-
las ~68!–~71! gives the dependence ofK and Neq upon V.
For instance, considerK: The main dependence onV comes
from the exponential factor

e2w
*

/«5e2E
*

/«epV2/«5e2E
*

/«e~V/Vep!2
, ~75!

FIG. 5. Asymptotic approximation of the pore density distrib
tion function n(r ,t) at transmembrane potentialVm50 for which
pore energyw5E(r ).
-

f

where

Vep5A«/p. ~76!

TheO(1) coefficienta in Eq. ~68! also depends onV but this
dependence is much weaker than that of the expone
e(V/Vep)

2
and is unlikely to be detectable experimentally.

practice,a is treated as a constant independent ofV, result-
ing in an approximation forK,

K'ae~V/Vep!2
. ~77!

The approximation toNeq based on the same reasoning is

Neq'N0er m
2

~V/Vep!2
. ~78!

In Eqs. ~77!,~78!, a and N0 are nominal ‘‘constants’’ in
which weakV dependence has been suppressed. The m
mum energy radiusr m also depends onV but, as Fig. 3
makes clear,r m changes very little asV is increased from 0
to Vc . Hence,r m is also treated as a nominal ‘‘constant.
The ODE ~67! with K and Neq given by ~77!,~78! has the
same form as the model proposed by DeBruin and Kr
sowska@27#, in which constantsa, Vep , N0 , and r m were
chosen to fit experimental data.

The constantVep , defined in Eq.~76!, is a characteristic
voltage of electroporation. For« defined in Eq.~19!, Vep
50.084 or, in dimensional units, 0.267 V. At a glance, th
estimate appears to be significantly smaller than experim
tal evidence, which puts threshold for observable electro
ration between 0.5 and 1.2 V, depending on the type of
membrane@1,28#. However, if V increases from 0 toVep ,
the rate of pore creation increases only by a factor ofe. Such
rate is too small to produce during a typical few millisecon
shock pore density sufficient for the experimentally dete
able increase in membrane conductance. To cause an ex
mentally observable effect,V must exceedVep by a factor of
2 or 3. Hence, threshold voltage for electroporation m
sured in experiments is actually 223Vep50.5320.8 V, well
within the range of experimental estimates.

VIII. DISCUSSION

The analysis presented in this paper reveals several in
esting features of the electroporation process. First, regar
the source of the conducting pores: Essentially all condu
ing pores are initially created as hydrophobic pores with
dius r .r * ~more precisely, in a thin boundary layer ju
right of r * ! and immediately convert to hydrophilic pore
Because of a very fast destruction rate, pores created
r ,r * have practically no chance of increasing their rad
and converting to conducting pores. Naively, one might
pect the interval 0,r ,r * to act as a source of pores b
cause pore creation rate is exponentially larger for
smaller pores. In fact, the opposite is true. A certain num
of pores created withr .r * cross over tor ,r * , where they
are destroyed. Hence, instead being a source of pores
interval 0,r ,r * acts as a sink, causing a drop in the po
distribution functionn(r ,t) in a thin boundary layer to the
right of r * . This feature of the electroporation process
lows the analysis to focus only on conducting pores living
the r .r * interval and to treatr * as an absorbing boundary
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Second, regarding the pore distribution function: A va
majority of pores accumulate around the energy minim
r m . The pore distribution functionn(r ,t) is well approxi-
mated by a Gaussian distribution with a sharp peak atr m and
exponentially small ‘‘tails’’ in the rest of the interval~Fig.
5!. The interaction of these tails with the energy barriers
r * andr d is responsible for pore creation, saturation, rese
ing, and rupture. Which events will take place, depends
the relative magnitude of the two energy barriers. Ifw*
,wd , then the interaction of the left tail with energy barri
at r * slows and shuts down the creation. If the number
pores is larger than the equilibrium, excess pores resea
climbing back the energy barrier atr * and crossing over into
r ,r * where they are destroyed. Ifwd,w* , then the pores
of the right tail cross the energy barrier atr d and expand
without bounds, possibly leading to irreversible breakdo
and mechanical rupture of the membrane. A qualitativ
different situation occurs if the energy minimum atr m and
the energy barrier atr d do not exist. In this case, the pore
created nearr * all expand without bounds, similar to
‘‘mudslide,’’ again setting up a stage for a mechanical ru
ture.

For w* ,wd , the asymptotic ODE~67! derived in this
study describes pore creation when pore densityN(t)
!Neq, saturation and turning the creation rate off whenN(t)
approachesNeq, and resealing whenN(t).Neq. In this case,
the ODE ~67! determinesN(t) and the pore distribution
function n(r ,t) is computed from Eq.~73!. Having n(r ,t),
one can determine the current flowing through pores a
using an appropriate circuit equation, follow the tempo
evolution of the transmembrane potentialV.

The asymptotic ODE~67! can also be used in cases
which the diffusion barrierwd is lower thanw* or altogether
absent. Ifwd,w* , saturation is achieved forN much less
thanNeq in Eq. ~70!. This is because escape over the ene
barrier atr d is energetically much easier than climbing u
the energy barrier atr 5r * . With N!Neq, the resealing
term in Eq.~67! may be dropped. If a local energy minimu
r m does not exist, there is no mechanism at all to genera
tail of n(r ,t) nearr 5r * . Without the significant resealing
induced by this tail, the resealing term in Eq.~67! can again
be dropped. Hence, for both cases discussed above, the
of pore production is approximated by omitting the reseal
term 2N/Neq in Eq. ~67!. However,n(r ,t) no longer has a
simple approximation such as a Gaussian aboutr m . Conse-
quently, one has no means of computing the current thro
pores and its effect on the transmembrane potentialV.
Hence, forwd,w* , the pore densityN(t) computed from
the ODE is valid only ifV is set by an external circuit, suc
as during voltage-clamp experiments@1,16#.

For the values of parameters in Table I, the diffusion b
rier wd disappears atVc'0.5 V. Does it mean that the ODE
loses validity atV close to 0.5 V? Not necessarily. Accord
ing to PDE ~1!, all pores created nearr * should expand
without bounds, leading to the mechanical rupture of
membrane. However, such catastrophic scenarios are no
served in practice. In typical electroporation experimen
majority of the cells reseal and survive, even if they a
exposed toV of 1 V and larger. The explanation is that,
most experimental situations, the diffusion barrier disappe
t
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only transiently, during the time whenV reaches its peak
Rapid creation of pores leads to an increase of the transm
brane current, which in turn leads to the decrease ofV below
Vc . The diffusion barrier atr d is restored, and the fact tha
most of the cells survive implies that the restoration ofwd

happens sufficiently fast and thatwd is sufficiently high to
prevent the escape of pores. Therefore, the ODE derive
this study may be applied even under transmembrane po
tials larger thanVc . There will be some loss in accuracy
during the short transient when the diffusion barrier disa
pears, the pore distributionn(r ,t) is not Gaussian and thi
model probably underestimates the magnitude of curr
flowing through the membrane.

The asymptotic ODE~67! was derived under the assum
tion that the temporal variations of energyw(r ,t), U(r ,t)
have characteristic time on the order ofr

*
2 /D'5 ms. When

the characteristic time ofw,U is much longer than 5ms,
n(r ,t) responds ‘‘quasistatically’’ to the temporal variation
Except for the boundary layer nearr * , the distribution is
nearly proportional to the Boltzmann factore2w(r ,t)/kT in Eq.
~47!. In this case, the quasistatic limit of the ODE~67! as
discussed in Sec. VI is valid. When the characteristic time
w,U approaches and decreases below the 5ms limit, the tails
of n(r ,t) away fromr m manifest significant deviations from
the Boltzmann factor. Still, the response ofn(r ,t) to tempo-
ral variation of w,U is nearly instantaneous and the po
creation rate is described by the time-dependent versio
the ODE~67!. Note that even in this case, the main depe
dence of coefficientsK andNeq in Eqs.~68!–~71! uponV(t)

is quasistatic, via exponential factorse(V/Veq)
2
, er m

2 (V/Veq)
2
.

The non-Boltzmann tail effect manifests itself as an exp
nential factor~72!. It is buried in theO(1) coefficientb in
Eq. ~70! and, as such, it is barely discernible in any practi
sense.

The lower bound on the admissible temporal variations
w,U is set by the relaxation time ofn(r ,t) from arbitrary
initial data to Gaussian form~73!. As argued in Sec. VI B,
this relaxation occurs within an initial layer of dimensionle
duration «. The dimensional time corresponding to« is
«r

*
2 /D'0.1ms. Hence, the time-dependent version of t

ODE ~67! remains valid when the time constants ofw,U are
0.1 ms or longer.

Setting limits on temporal variations of pore energyw,U
imposes the same limits on the transmembrane potentiaV,
which is the quantity available for experimental manipu
tion. During a typical electroporation experiment, changes
V occur due to two mechanisms:

~i! Direct charging of the membrane adjacent to the el
trode. This process has a time constantRmCm'1 – 10 ms,
whereRm andCm are the surface resistance and surface
pacitance of the membrane@29#.

~ii ! Polarization of the individual cells by an electric field
Here, the time constant depends on the shape of the cell
order of magnitude estimate isCmd/s i50.2522.5ms,
whered is the dimension of the cell ands i is the conductiv-
ity of the cytoplasm@30#.

Comparing these estimates with the 5 and 0.1ms limits
shows that the asymptotic ODE~67! and its quasistatic ap
proximation are both valid for case~i!: Even if the stimulat-
ing current has frequency in the MHz range, the respons
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the membrane is slow enough to shield pore energy from
changes. The frequency of the stimulus may be an issu
case~ii !. Small cells polarize and depolarize very rapidly
the external field, these rapid changes are reflected inw and
U, and the use of the quasistatic version of ODE~67! may be
‘‘pushing the envelope.’’ Still, even in this case, one c
expect only a modest difference between solutions using
quasistatic and time-dependent ODE. As argued above
time dependence affects only anO(1) coefficient b ~70!.
Therefore, for most experimental setups, the ODE~67!
should give an adequate description of the electropora
process. The only exception may be voltage clamp exp
ments, in which the rate of rise ofV does not depend on th
intrinsic properties of the cells and membranes but is
forced by an external circuit.

The advantages of the asymptotic ODE are fourfold. Fi
the simple form of the ODE~67! makes it amenable to ana
lytical examination that can elucidate the most import
qualitative features of the electroporation process. The s
qualitative features exist in the PDE~1! but are buried and
because of the difficulties associated with solving the P
and its analysis, are much harder to uncover. Second,
ODE contains a smaller number of parameters and mos
them are related in a straightforward way to experimen
measurements@16#. Thus, the ODE provides a convenie
conceptual framework for the design and interpretation
the electroporation experiments. Third, formulas~68!–~71!
presented in this paper provide the connection between
parameters of the ODE and the molecular-level consta
appearing in the PDE. This connection provides a way
using experimental results to evaluate the value of these
.
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stants which at present are known only to the order of m
nitude. Fourth, the ODE~67! is easy to solve numerically, a
a minimal computational cost and may serve as a too
study electroporation in the spatially distributed systems.

The ODE~67! is an asymptotic reduction of the Smolu
chowski equation~1! assuming a specific form of the por
energy functionw ~6!. In this formulation, the factors con
tributing to the energy are the surface tension of the me
brane, the line tension of the pore edge, and the memb
capacitance, which introduces dependence on the transm
brane potential. Pore energy~6! is at present the most widel
used in the literature. However, there exist formulations t
account for different factors, such as osmotic pressure@31#,
electrocompression of the lipid bilayer@32#, interaction with
the membrane cytoskeleton@25#, or deformation of cells by
electric field@33#. To electroporation theories based on the
alternative formulations, the exact form of the ODE~67!
obviously does not apply. However, if these theories
based on the Smoluchowski equation and if they cont
small parameters~which is quite likely!, then an asymptotic
reduction similar to the one presented here should be
sible. In such cases, the present study can provide a ‘‘b
print’’ for deriving simplified approximations for the theorie
of electroporation based on different pore energetics.
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